
SPACE SCIENCES LABORATORY 

ff 653 Ju ly65  

GPO PRICE 

CFSTl PRICE 

Hard copy (HC) -. 
, 

Microfiche (I?I F) - I  

B E R K E L E Y  L I F O R N I A  

N 6 5 - 3 0 4 7 3  



1 i :  Space Sciences Laboratory 
University of California 
Berkeley 4, California 

F i n a l  Report on 

DYNAMIC BEHAVIOR OF POROUS ELECTRODE SYST'ENS 

NASA Grant NsG 150-61 

Series No. 6 
Issue No. 22 

Richard C. Alkire 
Edward A. Grens I1 
Rolf H. Muller 
Charles W. Tobias 

June 24, 1965 



INTRODUCTION 

The research undertaken under t h i s  program has been directed toward 

achieving an improved understanding of t h e  operation of porous electrodee,  

p a r t i c u l a r l y  those flooded wi th  e lec t ro ly te  as found i n  primary and 

secondary b a t t e r i e s  and fue l  c e l l s  w i t h  l i qu id  phase reactant  supply. 

Such an understanding can only be a t ta ined  by consideration of the over- 

a l l  behavior of t he  electrode system i n  terms of the  fundamental physical  

and chemical processes occurring i n  the pores of the  electrode. That has 

been the approach used i n  t h i s  study. 

e lectrode k ine t ic  phenomena within t h e  electrode upon the s t a t i c  and 

dynamic performance of t he  electrode has been investigated,  and a procedure 

f o r  predict ing electrode performance from t h e  parameters character iz ing 

these basic  processes has been developed. 

The influence of t ranspor t  and 

Description of Porous Electrodes 

A porous electrode consis ts  of a connected matrix of an e l e c t r i c a l l y  

conducting so l id  mater ia l  Interspersed with a system of connected voids, 

o r  pores, t he  cha rac t e r i s t i c  dimensions of which a re  small i n  comparison 

w i t h  t h e  overall s i ze  of the  electrode. For the  flooded electrodes con- 

sidered here these pores a re  completely f i l l e d  with e lec t ro ly te .  One o r  

more ex te r io r  surfaces are maintained i n  contact w i t h  t he  bulk e lec t ro-  

lyte, and e l e c t r i c a l  contact i s  made w i t h  the  matrix. 

The electrode react ion takes place almost exclusively i n  the  pores. 

The primary reactants  may be  supplied either i n  the so l id  matrix o r  i n  

the e l ec t ro ly t e ,  and the  products may occur i n  e i t h e r  of the  phases. The 

reac t ion  i s  d is t r ibu ted  over the walls of the pores, the  rate a t  any 
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0 point being governed by the  species concentrations and po ten t i a l  pre- 

va i l ing  a t  t h a t  locat ion.  These conditions are, i n  turn ,  determined by 

t h e  t ransport  of species (ions, e t c . )  and current t o  and from the  posi- 

t i o n  i n  question. Thus the  transport  processes i n  the  pores and the  

electrode k ine t ic  re la t ionships  f o r  react ion rates a t  t h e  pore walls 

determine the d i s t r ibu t ion  of reaction i n  the  electrode and, l a rge ly  

through t h i s  d is t r ibu t ion ,  t he  performance of t h e  electrode. 

Background 

Although the  importance of flooded porous electrodes has been recog- 

nized f o r  many years, probably t h e  f i r s t  s ign i f icant  attempts a t  analysis  

of the  performance of these systems were undertaken i n  the la te  1940's 

[1,21. In  1956 Ksenzhek and Stender developed a one-dimensional model 

for the steady s t a t e  operation of porous electrodes which embodied many 

of important cha rac t e r i s t i c s  of most later methods of analysis  [3,41. In  

subsequent years, a number of t h e o e t i c a l  treatments of the  s t a t i c  opera- 

t i o n  of porous electrodes have appeared, most of them qui te  similar i n  

nature.  The more important of these a re  discussed i n  a previous report  

issued under t h i s  project  [ 51 .  

e i t h e r  expressly o r  by implication. 

A l l  a r e  based on a one dimensional model, 

Many simplifying assumptions are, of course, invoked i n  the  formu- 

Some l a t i o n  of a l l  t h e o r e t i c a l  models of t h e  flooded porous electrode. 

appear necessary t o  conduct any meaningful analysis.  Several which have 

been applied out of convenience r a the r  than necessi ty  r e s t r i c t  the range 

of appl icat ion of t he  model derived. Most important among these are 

assumptions of uniform e lec t ro ly te  concentration i n  the pores, uniform 

e l ec t ro ly t e  conductivity i n  the pores, and gross ly  simplified electrode 

k ine t ics  (equilibrium, l i nea r ,  o r  Tafel expressions).  The theo re t i ca l  
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treatments which were ava i lab le  p r io r  t o  t h i s  project  a l l  invoked one 

o r  more of these  assumptions. 

t i o n  t o  i n i t i a l  behavior of electrodes on c i r c u i t  closure, f o r  t h e  uni- 

f o m  e l ec t ro ly t e  cases, or t o  hypothetical e lectrode react ions which 

would follow simplified k ine t ic  laws over t he  wide ranges of l o c a l  

current  density encountered i n  any porous electrode. None of these  

treatments considered t r ans i en t  e f fec ts ,  other  than those associated 

with applied a l t e rna t ing  currents, i n  any quant i ta t ive  manner. 

In doing so, they e i t h e r  l imited applica- 

A good many measurements have been reported f o r  overa l l  current 

density-overpotential behavior of various porous electrode systems. 

However, repor t s  of experimental determinations of react ions d i s t r ibu t ion  

i n  porous electrodes are very d i f f i c u l t  t o  f ind.  Coleman made some very 

crude measurements w i t h  Leclanche' c e l l  e lectrodes [6 I and Daniel-Bekh 

attempted t o  measure po ten t i a l  d i s t r ibu t ions  i n  porous electrodes [l]. 

Because of the  experimental methods used, ne i ther  of these  approaches can 

be considered successful; t h e  d i s t r ibu t ions  measured were s t rongly in- 

fluenced by the measurement techniques. Later, po ten t i a l  d i s t r ibu t ion  

measurements f o r  macroscopic ( t u b e )  models of pores were reported [ T I ,  

bu t  r e l a t i o n  t o  behavior i n  microscopic pores i s  d i f f i c u l t .  

The d i s t r ibu t ion  of reaction i n  depth i n  the  body of a porous elec- 

t rode  is t h e  s ingle  most s ign i f icant  f ac to r  i n  i t s  operation. This 

d i s t r i b u t i o n  determines t h e  overal l  performance of t h e  electrode. Haw- 

ever, comparison of measured overal l  performance w i t h  t he  predict ions of 

various theo re t i ca l  models does not permit r a t i o n a l  evaluation of these 

models because suf f ic ien t  adjustable parameters e x i s t  i n  t h e  theor ies  so 

that most can be made t o  fit observed polar iza t ion  data. Measurements 

of current  d i s t r ibu t ion  a r e  necessary f o r  any r e a l  evaluation of t he  
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models used and a re  needed f o r  determination of fundamental electrode 

parameters. 

toward more complete understanding of porous electrode operation. 

The l ack  of reaction d i s t r ibu t ion  data has hindered progress 

Scope of the  Program 

The research e f f o r t  of t h i s  project has been concentrated i n  two 

areas:  t he  formulation of an improved theo re t i ca l  model f o r  flooded 

porous electrodes,  under dynamic as well  as s t a t i c  conditions; and the 

development of experimental methods f o r  measurement of reaction d is t r ibu-  

t i o n  i n  e lectrodes w i t h  small pore dimensions. 

In  the theo re t i ca l  investigation, a mathematical model has been de- 

rived which t r e a t s  t r ans i en t  and steady s t a t e  operation of flooded porous 

electrodes where no s igni f icant  changes occur i n  the  propert ies  of the 

electrode matrix during operation. This model includes consideration 

of var ia t ion  i n  e l ec t ro ly t e  composition with posit ion i n  the  pares and 

wi th  time. It alluws use of r e l a t ive ly  complex l o c a l  electrode kinet ic  

re la t ionships  including back reaction terms. Computer implemented compu- 

t a t i o n a l  procedures for  prediction of electrode performance have been 

developed, based upon t h i s  model. Using these techniques, we have a l s o  

investigated the e f f e c t s  of various simplifylng assumptions i n  model 

de f in i t i on  upon overa l l  electrode performance predictions.  

The experimental s tudies  have included three  approaches t o  react ion 

d i s t r ibu t ion  measurement. In the f irst ,  a segmented porous electrode t o  

stacked porous lamina was used. D i f f i c u l t i e s  i n  electrode fabr ica t ion  

r e s t r i c t e d  the appl icat ion of t h i s  technique. In  the  second method, a 

s ingle  pore i n  the  form of a micro-fiseure with segmented walls was 

employed wi th  a redox electrode reaction. Current d i s t r ibu t ions  f o r  a . 
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c range of pore sizes have been measured i n  t h i s  manner, although quantita- 

t i ve  results have not been sui table  f o r  comparison w i t h  t heo re t i ca l  models. 
I 

In  the  l a a t  s e r i e s  of experiments, porous metal e lectrodes have been d i s -  

solved anodically under carefu l ly  control led conditions, wi th  current  

d i s t r ibu t ion  being determined by post e l ec t ro lys i s  phtomicrographic 

examination. This approach has shuwn considerable po ten t i a l  and i s  being 

continued under other  sponsorship. 
-E 

* 
Inorganic Materials Research Division, Lawrence Radiation Laboratory. 



c 

c 

6 

THEDRETICAL ANALYSIS 

The theo re t i ca l  analysis  carried out i n  t h i s  invest igat ion has been 

described quite completely i n  previous reports  and other  publications 

[5,10,111 and w i l l  only be summarized here. This analysis  has consisted 

i n  the  der ivat ion of a one-dimensional model representing flooded porous 

electrodes under both s t a t i c  and dynamic conditions and the  development 

of computational techniques, based upon the  model, f o r  prediction of 

system performance. 

Description of Porous Electrode Model 

In  invest igat ing porous electrodes, one f inds it very d i f f i c u l t  t o  

consider the  ac tua l  geometrical configuration of t he  imtrix;  inost such 

configurations are qui te  random and not e a s i l y  characterized. 

simplified pore models (e.g., c i r cu la r  cyl inders)  can be considered but 

are not t r u l y  representative of the s t ruc tures  involved. I n  view of 

Highly 

these considerations a one dimensional m o d e l  appears preferable and i s  

used i n  t h i s  study, a s  wel l  as i n  almost a l l  previous treatments. In 

t h i s  model the  configuration of the  porous body i s  ignored, and the  e n t i r e  

e lectrode is t rea ted  as a homogeneous macroscopic region of e l ec t ro ly t e  

w i t h  a d is t r ibu ted  current (and reacting species) source (sink) repre- 

sent ing the reaction occurring a t  the  electrode-electrolyte  interfaces .  

A l l  gradients except those i n  the overal l  d i rec t ion  of current flow a r e  

neglected. Thus a representation i s  derived i n  which the  variables a r e  

functions of only one space dimension, t h a t  normal t o  the  electrode face. 

This model can be v a l i d  so long as the  electrode i s  macroscopically mi- 

form and the  charac te r i s t ic  dimensions of t he  matrix (pores) a re  small 
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compared t o  dis tances  over which these a r e  s ign i f icant  var ia t ions  i n  

concentration o r  po ten t ia l .  

The e l ec t ro ly t e  w i t h i n  (and ex ter ior  t o )  t h e  electrode i s  composed 

of an  undissociated solvent and m dissolved species, j ,  a t  l o c a l  

concentrations c.(gmol/cm 3 >. These species may posses a charge z ( ion ic  
J J 

species)  o r  be uncharged. 

i s  @(V), re fer red  t o  t h e  i sopotent ia l  matrix. 

The poten t ia l  a t  any point i n  the e l ec t ro ly t e  

The concentrations and 

po ten t i a l  a r e  f’unctions of the single coordinate of t he  system, y, t h e  

dis tance i n t o  the  electrode from i t s  surface facing t h e  counter-electrode. 

The other  face of t h e  electrode i s  taken as s imi l a r ly  arranged, and thus  

ha l f  of t h e  symmetrlc system i s  considered, o r  e l s e  assumed sealed t o  flow 

of a l l  species i n  t h e  e lec t ro ly te .  

The electrode react ion i s  considered i n  t h e  general form 

- Z 
V j M j  j + n e  

where M a r e  t h e  reac t ing  species en ter ing  w i t h  stoichiometric coeff i -  

c i e n t s  Y and n i s  the number of Faradays of cinarge passed per gxol of 

react ion.  The k ine t ics  of t h i s  reac t ion  a r e  represented by a re la t ion-  

j 

ship of t h e  type 

is = f ( a , c j )  

where iS(A/cm ) i s  t h e  l o c a l  t r ans fe r  current  density a t  an element of 2 

pore w a l l  and @ and a l l  c 

one-dimensional form t h i s  becomes a s e t  of source terms f o r  t h e  species. 

a r e  values a t  t h a t  pos i t ion .  Reduced t o  the  
J 

3 is 
nF s.  = - 

J 

where S i s  t h e  species source i n  gplol/cm’-sec a,nd a i s  t h e  spec i f ic  
j 

( 3 )  

2 surface of the  electrode i n  cm /cm3. 
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The behavior of t h e  electrode i s  determined by the  t ransport  of 

species and cha.rge i n  t h e  e lec t ro ly te .  The f lux  of any species, j ,  at 

any point i s  given i n  the absence of convection, by: 

N. = - DO? - z EU c V@ 
-J J J  J J j  (4) 

2 where N i s  f l u x  i n  gmol/cm -see, D i s  t h e  species diffusion coef f ic ien t  -J j 
2 (cm /see),  E the  e lec t ronic  charge, and u t h e  species mobili ty (crn/sec- 

dyne). 

J 
The current i n  the  electrolyte ,  being carr ied e n t i r e l y  by the  

charged species, can be represented by: 

m 
F 

L = F L  Z j N j  ( 5 )  
j 

2 where i i s  t h e  current densi ty  i n  A/cm pore cross section. Although the  

po ten t i a l  i n  the  solut ion i s  most properly given by the Poisson equation 

3 
2 where CL i s  solut ion permi t t iv i ty  (coul /erg-cm), t h i s  re la t ionship can be 

replaced t o  a high degree of approximation by the  e l ec t roneu t r a l i t y  

condition 2’ Z j C j  = 0 . 
J 

(7)  

By consideration of conservation of each species i n  the  e l ec t ro ly t e  the  

basic  cont inui ty  re la t ions ,  upon which analysis  of the  electrode i s  

based, a r e  developed. 

ac * 

B y  conservation of charge 
V .  

1 

I 

1 
1 

4 

I 
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Although the  conservation equation ( 8 ) ,  together with appropriate 

boundary conditions and a k ine t ic  expression (2)  a r e  su f f i c i en t  f o r  a 

complete characterization of electrode operation, t he  complexity of dealing 

with these equations i n  t h e i r  most general form, together with a lack  of 

da ta  necessary f o r  most general treatment (e.g., ion d i f fus ion  coef f i -  

c i en t s  a s  functions of e lec t ro ly te  composition), necess i ta te  that several  

assumptions be invoked. Three have been mentioned e a r l i e r :  

1. The electrode can be described by a one-dimensional approximation. 

2. 

3. The matrix i s  isopotent ia l .  

There i s  no hydrodynamic flow of e l ec t ro ly t e  i n  the  pores. 

I n  addi t ion  it i s  assumed tha t :  

4. Transport parameters (e.g., D . )  a r e  constant, independent of con- 
J 

centrat ion,  over t h e  range of conditions ex i s t ing  i n  any electrode. 

5. The re la t ionship  between l o c a l  electrode reac t ion  r a t e  ( t r ans fe r  

current  dens i ty)  and conditions prevail ing a t  that l o c a l i t y  can 

be represented by an exp l i c i ty  expression a s  i n  eqn. (2) .  

6. The e l ec t ro ly t e  i s  isothermal. 

7. The e f f e c t  of t ransport  phenomena i n  t h e  e l ec t ro ly t e  ex te r io r  t o  

t h e  electrode can be accounted f o r  by an equivalent " t ransfer  

layer"  expressed a s  a thickness of e lectrode s t ruc ture  within 

' which no electrode react ion can occur. 

8. The so l id  phase of t h e  porous electrode ( the  matrix) undergoes 

no s igni f icant  modification i n  the  course of t h e  electrode process. 

Application of these assumption t o  t h e  general description of t rans-  

port  i n  t h e  porous electrode leads t o  t h e  development of t h e  theo re t i ca l  

model used i n  t h i s  project .  The one-dimensional arrangement i s  shown i n  

Fig. 1. Using t h e  one-dimensional geometry and the  Nernst-Einstein 



10 

Electrode backing plate 
(or center of symmetry) 

counterelectrode - + Y  

Fig. 1. The One-dimensional Porous Electrode Model. 
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For t h e  geometry considered, and f o r  pore e l ec t ro ly t e  i n i t i a l l y  a t  b u l k  

e l ec t ro ly t e  concentration, the  s i d e  conditions a r e  

0 

= 
t = 0; 

J 

0 y = - 6 ;  c = c 
J J  

This system cons t i t u t e s  m equations i n  the  m, c 

var iable .  The required addi t ional  re la t ionship  i s  the  e l ec t roneu t r a l i t y  

and @, t h a t  i s  i n  m+l J 

condition (7) .  
* The spec i f ica t ion  of t h e  parameters of t he  system (e.@;., c i , j’ 

6,  E )  and the  k ine t ic  expression f(ci ,Z)  leads, i n  pr incipal ,  t o  a com- 

p l e t e  descr ipt ion of t h e  electrode. Solution of t h e  simultaneous, non- 

l i n e a r  p a r t i a l  d i f f e r e n t i a l  equations (lo), however, i s  very d i f f i c u l t  

indeed, espec ia l ly  f o r  t h e  more r e a l i s t i c  forms of f (such as t h e  Volmer 

type expression). 

Mathematical Analysis 

For mathematical analysis ,  the equations a r e  conveniently put i n  

dimensionless form by t h e  transformation: 
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where Ze i s  the equilibrium electrode po ten t i a l  a t  b u l k  e l ec t ro ly t e  con- 

d i t i ons  and the  component k i s  a non-reacting species present i n  la rge  con- 

centrat ion.  With t h i s  transformation the  f o l l m i n g  dimensionless para- 

meters appear 

and the  equations representing t h e  model become: 

f Z j C j  = 0 

J 

w i t h :  T = 0 : C = r J J  
Y = -A: C .  = r 

J j  

The requirement of a current density i* a t  the  face of t he  electrode i s  

expressed by the i n t e g r a l  condition: 

L'a f(@,C J ) dY = 1 . (13) 

This system of non-linear p a r t i a l  d i f f e r e n t i a l  equations i s  su f f i -  

c i e n t l y  complex so t h a t  no ana ly t ica l  solut ions a re  possible f o r  meaning- 

f u l  choices of t he  k ine t ic  expression. The non- l inear i t ies  render 

numerical solut ions d i f f i c u l t ,  but such solutions can be  achieved. 

A n  impl ic i t  numerical procedure, based upon a Crank-Nicholson f i n i t e  

difference representat ion for the parabolic equations and an empirica.lly 

convergent i t e r a t i o n  process over t h e  non- l inear i t ies  was developed during 

t h i s  proJect.  It i s  described i n  d e t a i l  i n  a previous report  [ 5 1  and 



L 

13 

This has been implemented on an IBM 7094 e lec t ronic  computing system. 

technique i s  applicable t o  any exp l i c i t  k ine t ic  expression of the form of 

equation (2) and provides both t rans ien t  and steady s t a t e  predict ions of 

reac t ion  d i s t r ibu t ion  i n  t h e  porous electrode and of electrode overpoten- 

t ia l /cur ren t  densi ty  behavior 5 

This model, and t h e  associated computational procedure, have served 

as a basis f o r  a l l  t heo re t i ca l  invest igat ions of t h i s  project .  

Inveat igat ion of Example Electrode Systems 

The ca lcu la t iona l  procedure described above was applied t o  the  ana lys i s  

of steady state and t r ans i en t  behavior i n  two representative but ideal ized 

electrode systems: t he  metal-insoluble oxide electrode i n  basic solut ion 

( idea l i zed  cadmium anode ) and the ferricyanide-ferrocyanide redox cathode 

i n  2N sodium hydroxide e lec t ro ly te .  The f i r s t  represents an anodic react ion 

occurring i n  a binary electrolyte;  the  second a redox react ion i n  the  presence 

of excess i n e r t  e l ec t ro ly t e .  The proper t ies  of these systems are summarized 

i n  t h e  tab1e:beluw: 

uletal-Metal Oxide Anode 

React ion 

Elec t ro ly te  

Kinetic Parameters f o r  
Volmer- t ype -re s s ion 

Transfer coef f ic ien t  a 
Exchange current den- 
s i t y ,  io(A/cm2) 

Electrode Parameters 
a (cm2/cm3) 
a ( c d  

Y + 20” - M(0II ; I )  + e -  

5N KOH 
3IT /I(+/None/None 

-l/+l 

t2/0 

4/2 

104 
3.10 

Fe (CN)Z4 Cathode 

Fe (CN)g3-Fe ( CN)Z4 + e’ 
2N &OH 
Fe (CN)&3/FE( CN)g4/Na+/OH‘ 

-3/-4/+1/-1 
tl/-l/O/O 

O.5/0.5/0.8/3.2 

0.5 

0.025 

2 x 1s 
0.33 
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For both electrodes a wide range of operating current  dens i t i e s  (0.001-1 

A/cm ) were invest igated.  2 For the metal oxide anode varying ex terna l  

t r a n s f e r  l aye r  thicknesses were examined ( 0, 0.01, 0.05 cm), while f o r  

t h e  redox cathode several  bulk concentrations of reactant  and product were 

studied (0.02, 0.10, 0.20 M). 

The steady s t a t e  behavior and t h e  t r ans i en t s ,  following appl icat ion 

of constant current  d r a i n  from the open c i r c u i t  condition, a r e  presented 

i n  d e t a i l  i n  t h e  report c i t ed  previously [51. Current and concentration 

d i s t r ibu t ions  i n  depth i n  the  electrode as well  a s  t o t a l  electrode over- 

po ten t i a l  are predicted for t h e  stea,dy s t a t e  and a t  a, l a rge  number of 

elapsed times during t h e  t rans ien ts .  The d e t a i l s  of these r e s u l t s  w i l l  

not be repeated here; however, t h e  nature of t h i s  calculated behavior i s  

i l l u s t r a t e d  i n  Figs.. 2 a.nd 3, i l l u s t r a t i n g  t h e  steady state current d i s -  

t r i b u t i o n  a t  various current  dens i t ies  and t h e  overpotential/current density 

curves under several  conditions f o r  t h e  metal-metal oxide anode, and i n  

Fig.  4, showing t h e  t r ans i en t  behavior of sev-era1 var iables  f o r  one operating 

condition of t h i s  e lectrode.  The t r ans i en t  process i s  shown i n  another 
* 

way i n  Fig.5 , t h i s  time f o r  the redox cathode, by a series of reac t ion  

d i s t r i b u t i o n  p r o f i l e s  a t  increasing elapsed times. 

Several general statements can be made concerning the  behavior pre- 

d ic ted  by t h i s  one-dimensional model. A t  steady state, operation i s  

characterized by a moderately t o  highly nonuniform d i s t r ibu t ion  of e lec-  

t rode  i n  depth i n  t h e  electrode. This nonuniformity increases with in-  

creasing values of t he  parameters f!, (exchange current densi ty)  and B 

(operat ing cur ren t  dens i ty) .  If current dra in  ( P )  i s  decreased t h e  

* 
The parameter 4 i s  the dimensionless exchange current densi ty  f o r  t h e  
Volmer k ine t i c  expression: 

a i 2 i o  

nF Dkc; 
4 =  
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# reac t ion  d i s t r ibu t ion  becomes more uniform only up t o  a point, approaching 

a l i m i t  which s t i l l  may be very nonuniform. 

profoundly a f f ec t  s the  overpotential/current re la t ionship  f o r  the  elec-  

trode, causing it t o  be r e l a t ed  i n  no simple way t o  the  overpotential  

expression f o r  the  l o c a l  electrode react ion.  

The react ion d i s t r ibu t ion  

The t r ans i en t  behavior a f t e r  i n i t i a t i o n  of constant current operation 

involves complex phenomena of reaction d i s t r ibu t ions  which are not only 

nonuniform but a re  changing with time. 

leads  from a moderately nonuniform i n i t i a l  d i s t r ibu t ion  t o  a highly non- 

uniform steady state over times of order 10 t o  10 

of a reservoi r  of reactant  i n  the pores deep i n  t h e  electrode of ten  

s i g n i f i c a n t l y  a f f e c t s  t h e  course of t h e  process only i n  those p a r t s  of 

t h e  electrode where l i t t l e  current i s  t ransferred.  

The course of t h e  t r ans i en t  process 

4 seconds. The presence 

Polar iza t ion  of Flooded Porous Electrodes 

The predicted electrode overpotential/current dens i ty  (or  polar iza-  

t i o n )  behavior was, as mentioned above, not simply related t o  the l o c a l  

overpotential  (k ine t ic  ) expression. 

treatments had resu l ted  i n  simple re la t ionships  between porous electrode 

behavior and t h a t  of t he  corresponding f l a t  p l a t e  electrode. Since t h i s  

Several previous, and much simplified, 

po lar iza t ion  i s  a matter of considerable i n t e r e s t ,  an inves t iga t ion  of 

t h e  e f f e c t s  of simplifying assuaptions i n  mathematical models and of t h e  

electrode k ine t ic  expression used was car r ied  out using t h e  ca lcu la t iona l  

procedure discussed above. The metal-metal oxide electrode described 

previously w a s  used as a vehicle f o r  t h i s  study (with io taken a s  lo-* 
2 A/cm ). 

The basic  e lectrode kinet ic  expression considered was the  Volmer- 
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t y-pe expre s s i  on: 

C 

RT is = io 7- fCr exp [T - 2 exp 
0 

P 
C L o  r 

where 7 i s  t h e  l o c a l  overpotential  (@-ae) and the  subscr ipts  r and p 

r e f e r  t he  reactant  and product, respectively.  Effects  of var ia t ions  i n  

a and io were calculated.  

s ion a t  high and low overpotentials,  that i s  the  Tafel and l i n e a r  type 

k ine t ic  expressions, were a, lso examined. The simplifying assumptions 

whose e f f e c t s  were studied were those commonly used i n  most published 

porous electrode analyses: 

uniform po ten t i a l  i n  the  e lec t ro ly te .  

The d e t a i l e d  r e s u l t s  of t h i s  invest igat ion are presented elsewhere 

For comparison, l imi t ing  forms of t h i s  expres- 

uniform concentration i n  the e l ec t ro ly t e  and 

ill]. 

far more l i n e a r  t-mn tha t  fo r  the q-iif-~~lezt,  plam electrode, as shuwn i n  

Fig. 6, and cannot be characterized by any "Tafel slope. Changes i n  the  

values of a and io grea t ly  influence the pos i t ion  and shape of t h i s  po lar i -  

zat ion curve a s  can be seen i n  Fig. 7, but a l i n e a r  r e l a t ion  between over- 

po ten t i a l  and log  (current density) never occurs. 

l i m i t i n g  approximations t o  the Volmer k ine t ic  expression i s  depicted i n  

Fig. 8. Since wide ranges of conditions e x i s t  simultaneously over the  

They shared t h a t  the polar izat ion curve f o r  a porous electrode i s  

I1 

The e f f ec t  of using 

depth of an operating porous electrode, these l imi t ing  forms would not be 

expected t o  be va l id .  

When the  simplifying assumption of uniform e l ec t ro ly t e  composition 

i s  applied it results i n  predictions af polar iza t ion  that are perhaps 

30% low. 

results, a t  least f o r  t h i s  concentrated e l ec t ro ly t e ,  but s t i l l  y i e l d s  

predict ions which deviate s ign i f icant ly  from the  results of the more general 

analysis. 

The assumption of uniform e l ec t ro ly t e  po ten t i a l  gives better 
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This study of t h e  prediction of polar iza t ion  has indicated the 

necessi ty  of analyzing each case of i n t e rea t  and not re lying upon simple 

re la t ionships  between porous electrode polar iza t ion  and that of equi- 

valent plane electrode. 
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EXPERDG3TA.L INVESTIGATIONS 

The need f o r  basic experimental research on the  behavior of porous 

electrodes has been mentioned. Due t o  the  ra ther  complex phenomena 

involved i n  the  dynamic behavior of ac tua l  porous electrodes,  pa r t i cu la r ly  

those involving sol id-sol id  transformations, it seemed reasonable t o  

f i r s t  undertake t h e  investigation of systems i n  which t h e  pore s t ruc ture  

remained unaltered i n  the  course of charge t r ans fe r ,  specified-ly those 

involving redox type react ions.  

Three e s s e n t i a l l y  independent experimental approaches were made; 

each awed  a t  the  determination of the  nature of d i s t r ibu t ion  of current 

i n  a macroscopically homogeneous porous electrode i n  the d i r ec t ion  normal 

t o  the  electrode surface. 

surface wa6 t o  be represented by the  macroscopic average current densi ty  

prevai l ing a t  that pa r t i cu la r  depth. 

described i n  the  previous section require  the  experimental determination 

of the  current d i s t r ibu t ion  as a function of t h e  fundamental parameters 

of the  system, including 

s i t y  and 4 which represents the exchange current dens i ty  of the electrode 

The current densi ty  a t  any distance from t h e  

Tests of the  theo re t i ca l  model 

which i s  a dimensionless applied current den- 

reac t  ion. 

Inspection of these parameters reveals  t h a t  it i s  not possible  t o  

obtain dynamic s imi l a r i t y  between an ac tua l  porous electrode having a 

thickness i n  the  order of 1 mm and a pore diameter of 1-10 microns, and 

a porous s t ruc ture  - or  a single pore - w i t h  g rea t ly  expanded dimensions. 

Dynamic s imi l a r i t y  between m o d e l  and prototype requires  that  the 
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values of parameters between the  small and la rge  scale  system should be 

ident ica l .  

known electrolyte-electrode combination i s  evident since the  length dimen- 

That t h i s  cannot be experimentally accomplished with any 

sion, 1, i s  scaled by fac tors  i n  which only concentration, ck, 0 can be 

independently varied; e lec t ro ly te  concentrations i n  r e a l  electrodes are 

usual ly  high, and fur ther  increases f o r  scal ing a re  l imited.  

Experiments were therefore  designed on a scale  as close t o  the  

geometric dimensions of ac tua l  prac t ica l  porous electrodes as  possible.  

Due t o  severe l imi ta t ions  imposed by avai lable  mater ia ls  and machining 

techniques the  geometric scale  up required was s t i l l  i n  the  order of 

tenfold - a ratio higher than desirable.  

The experimental models used were a s  f o l l w s :  

1. Cathodic reduction of potassium ferr icyanide i n  a segmented, 

multi layer nickel wire mesh screen electrode. 

Cathodic reduction of potassium ferricyanide i n  a single pore 

electrode i n  the form of a microfiesure. 

2. 

3. Anodic dissolut ion of a porous copper matrix under controlled 

external  mass transport  conditions.. 

I n  the  folluwing b r i e f  description i s  given of the progress made w i t h  

these experimental models. 

Current Distr ibut ion Multilayer Wire Mesh Electrodes 

The f irst  experimental approach i n  t h i s  laboratory f o r  t he  measure- 

ment of current d i s t r ibu t ion  i n  porous electrodes was based on the 

development of a sectioned electrode b u i l t  of layers  of nickel screen 

i n  which t h e  ferricyanide-ferrocyanide redox react ion was studied. 

“his  ’work has been discussed i n  d e t a i l  i n  an e a r l i e r  report [121. 
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Ekperimental Apparatus: Five t o  seven 150 or  250 mesh nickel screens, 

with square openings of 104 and 60 microns, respectively,  were spot-welded 

together  t o  form approximately 1 m m  th ick  electrode sections.  Fach of 

these compound sections was provided with a tab on one s ide t o  make 

e l e c t r i c a l  contact t o  the ex ter ior  c i r c u i t .  A "sandwich" was b u i l t  of 

these sections containing 5 t o  LO compound screens, a s  shown i n  Fig. 9, 

each pair of sections separated by two layers  of porous nylon cloth of 

approximately 150 micron thickness. The f i n a l  electrode had the  dimen- 

sions of 2.9 x 9.9 x 1.0 ( o r  0.5) cm. 

sectioned electrode was 71-75$ and the spec i f ic  i n t e r f a c i a l  area 160-270 

The porosity of the  assembled 

cm 2 3  /cm . 
To obtain a w e l l  developed hydrodynamic boundary layer along the 

electrode surface a 0.5 x 5 cm cross section, 26 cm long, l u c i t e  f l a w  

channel was constructed, and t h e  porous screen electrode in s t a l l ed  co- 

planar with the  bottom of the channel a t  the  downstream end. Opposite 

t he  porous electrode a ceramic diaphragm l e d  t o  a counterelectrode com- 

partment. This apparatus i s  ahown i n  Fig. 10. The e l ec t ro ly t e  was 

c i rcu la ted  through t h i s  channel a t  r a t e s  up t o  4.3 gpm. 

Experimental Procedure: Based on extensive experience wi th  the 

potassium ferro-ferricyanide couple [13,14 1, the  cathodic reduction of 

ferr icyanide was chosen as the  electrode reaction. 

so lu t ions  containing 0.02 t o  0.2 gmol potassium fer ro-  and ferr icyanide 

and 2 gmol sodium hydroxide per l i t e r  were used i n  these experiments. 

The e lec t ro ly t e  wa8 kept i n  a nitrogen atmosphere. 

Freshly prepared 

Constant current was passed through the  c e l l  i n  a c i r c u i t  a s  depicted 

i n  Fig. 11, and t h e  branch currents t o  each of the sect ions measured by  

p o t e n t i a l  drops across calibrated r e s i s t o r s  t o  determine current 



28 

Fig. 9. Multilayer Wire Screen EZectrodes. 

c 
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Fig. 10. Flow Cell fo r  Ekperiments w i t h  Multilayer Wire 
Screen ELectrodes. 
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d is t r ibu t ion .  Although a scheme i n  which t h e  r e s i s t o r s  a re  var iable  

and can be adjusted so t h a t  t h e  poten t ia l  drop t o  each electrode sec t ion  

i s  equal i s  highly des i r ab le ,  manual balancing of 5 t o  10 sections i s  

v i r t u a l l y  impossible. I n  conduct of t he  experiments t h e  prepared e lec-  

t rode  was connected a s  a compound cathode and i n s t a l l e d  i n  the channel. 

Electrolyte  c i rcu la t ion  was s ta r ted  and af ter  a few minutes a prese t  

value of constant current was applied across  the  c e l l .  The branch cur- 

r en t s  were measured i n i t i a l l y ,  and five minutes a f t e r  t he  s t a r t  of e lec-  

t r o l y s i s .  After the experiment, t he  solut ion was again analyzed. 

Results and Discussion: As expected from t h e  foregoing theo re t i ca l  

developments, a t  a l l  l e v e l s  70-90$ of t h e  current  react ion took 

place i n  the  f ront  sec t ion  of the electrode (facing the anode), and the  

t r a n s f e r  current  dropped t o  vanishing values i n  the  sect ion f a r t h e s t  

from the  f ron t .  

current ,  e lectrode thickness ) were not adequately re f lec ted  by appropriate 

changes i n  t h e  de ta i led  nature of the observed current  d i s t r ibu t ion .  

Several f ac to r s  were recognized a s  responsible f o r  the disappointing 

performance of t h i s  system: 

However, changes i n  the input var iables  (concentration, 

1. Due t o  t h e  r e l a t i v e l y  large mesh, and the pockets occurring 

, between imperfectly welded screens, hydrodynamic flow through 

the  body of t he  porous matrix contributed s ign i f i can t ly  t o  the 

mass t ranspor t  i n  the depth of t h e  electrode.  

extent  of t h i s  contribution, and i t s  e f f e c t  on the  current d i s -  

t r i b u t  ion, could not be determined. 

The r e l a t i v e l y  l a rge  (up t o  0.1 ohm) shunt res is tances  which 

were required due t o  the small currents  t ransferred i n  the 

The nature and 

2. 
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3- 

4. 

segments i n  t h e  back of t h e  electrode resul ted i n  excessively 

l a rge  po ten t i a l  differences between the  front segments (where 

l a rge  currents  were transferred).  

were successfully compensated f o r  by appropriate modifications 

of t h e  theo re t i ca l  model I121, t he  experimental model l o s t  

much of i t s  u t i l i t y .  

The flow channel used was inadequate t o  give f u l l y  developed 

turbulent  flow and no alluwance f o r  mass t r a n s f e r  entrance ef-  

f e c t s  was made. 

Other fac tors  possibly contr ibut ing t o  the  lack  of resolution 

capab i l i t y  of t h i s  system included poisoning of t h e  nickel  

screen by impurities accumulating i n  t h e  e l ec t ro ly t e  (such as 

minute quant i t ies  of o i l ,  polymers ), nonhomogeneous poros i ty  due 

t o  s l i g h t  buckling of screens and separators, and var ia t ions  i n  

due t o  l o c a l  s t r e s ses  in t ro -  t h e  exchange current  density, 

duced by the  mechanical handling and welding of t he  electrode.  

Although these po ten t i a l  drops 

‘07 

The experiments employing t h e  nickel  screen segmented electrodes d i d  

not y ie ld  quant i ta t ive  data f o r  confirmation of t h e  theo re t i ca l  models. 

Combinations of f ac to r s  inherent i n  t h e  design of t h e  measuring c i r c u i t ,  

i n  the  construction of t h e  screen stack, and i n  t h e  choice of react ing 

system are responsible f o r  t h i s  f a i l u r e .  The development of t h e  basic  

c i r c u i t r y  f o r  the  handling of multisegmented electrodes and t h e  concept 

of t h e  flow channel c e l l ,  together with the  wealth of qua l i t a t ive  obser- 

vations obtained i n  t h i s  phase of our project ,  have been u t i l i z e d  i n  new 

e f f o r t s  toward t h e  obtaining current d i s t r ibu t ion  measurements 
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Current Distr ibut ion i n  a Micro-fissure Single Pore Electrode 

Experiments with an a r t i f i c i a l  s ingle  pore electrode have been under- 

taken t o  explore possible means for experimentally evaluating ce r t a in  

c r i t i c a l  assumptions made i n  the&eore t i ca l  models. 

f o r  the  s ingle  pore s t ruc ture  was t h a t  of a s t r a igh t ,  rectangular f i s su re .  

This arrangement allows the  use of a small pore opening while a t  the  same 

t i m e  it r e t a ins  an ac t ive  electrode area la rge  enough t o  r e su l t  i n  measur- 

ab le  e l e c t r i c a l  currents.  The measurements aimed at  determining the  cur- 

rent  d i s t r ibu t ion  i n t o  the depth of  t he  f i s su re  s ingle  pore a s  a function 

of time . 

The geometry chosen 

The current d i s t r ibu t ion  i n  the  micro-fissure, chosen t o  represent a 

s t ra ight  s ingle  pore, was determined by measuring branch currents  from 

mutually insulated sections of two f la t  electrodes facing each other a t  

adjustable dis tances  corresponding t o  typ ica l  pore diameters. 

Experimental Apparatus-Electrodes: The cha rac t e r i s t i c  dimension of 

any r e a l i s t i c  pore model has t o  remain very small (order of 10 microns) a s  

mentioned previously. A s  a consequence, exceedingly close mechanical 

tolerances a re  required i n  the  construction of the  electrode assemblies. 

Two d i f fe ren t  types of segmented electrodes have been constructed. 

Both a r e  5 centimeters wide; type I i s  1 centimeter deep and divided i n  

t h e  onelcentimeter direct ion into 10 e l e c t r i c a l l y  insulated sections of 

equal depth. Type I1 i s  0.3 cm deep and divided in to  5 sections,  thus, 

allowing a b e t t e r  s p a t i a l  resolution of t h e  current d i s t r ibu t ion  over a 

shorter  distance.  

pure nickel  ( I N C O  200) a l te rna t ing  with an e l e c t r i c a l  insulator .  

was chosen f o r  reasons of i t s  previous character izat ion a s  a redox- 

electrode, i t s  machinability and pr ice .  In  the  electrodes of type I 

Both electrodes were prepared by bonding sheets of 

Nickel 
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the insu la tor  was a sandblasted one-mil "Mylar" polyester film, the 

adhesive a polyester cement (Du Pont 46950). 

bonding the electrode stacks consisted i n  keeping the  sections e l e c t r i -  

c a l l y  insulated,  because considerable pressure had t o  be applied during 

the  heat-curing of the adhesive i n  order t o  produce t h i n ,  uniform insu- 

l a t i n g  layers .  The electrodes of type I1 employed nickel oxide layers ,  

formed by air-annealing of the nickel sheets, a s  an e l e c t r i c  insulator  

and an epoxy adhesive (@on 826 and Versamide 140 1:l). 

possible t o  use the polyester film only a s  a spacer i n  the  center of t h e  

electrode s tack and expose the chemically more r e s i s t an t  epoxy res in  t o  

the  e lec t ro ly te .  This construction a l so  avoided the polyester adhesive 

which had given r i s e  t o  minute displacements between electrode sections 

under mechanical s t r e s s .  The thermally formed nickel oxide was found i n  

separate t e s t s  t o  be r e s i s t an t  t o  cathodic polar izat ion.  

The major d i f f i c u l t y  i n  

Thus, it was 

The electrode stacks thus formed were ground and polished on t h e i r  

f ront  side t o  expose the ac t ive  segmented electrode area. 

were insulated wi th  an epoxy coating. 

be exceedingly d i f f i c u l t  f o r  the following reasons: 

All other faces 

The polishing operation proved t o  

1. The electrode surfaces have t o  be prepared with opt ica l  pol ish 

and f l a tnes s  (1 micron) i n  order t o  r e su l t  i n  a uniform, well- 

' defined f i s su re  opening. 

2. The electrode segments have t o  remain e l e c t r i c a l l y  insulated 

from each other. Burrs across the  separators which a re  e a s i l y  

formed during the grinding process due t o  the  softness of pure 

nickel  have t o  be avoided. 

3. The electrode surfaces have t o  be a t  r igh t  angles t o  the  sheet 

stacks t o  result i n  a f i ssure  of uniform opening. 
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4. The electrodes must 

polishing operation 

be  held with a minimum of s t r a i n  during t h e  

i n  order t o  r e t a i n  t h e i r  f l a tnes s  a f t e r  

removal from the  j i g .  

Meta.1 and in su la to r  sections must remain co-planar during the  

polishing despi te  t h e i r  d i f fe ren t  hardness. 

5 .  

After  much experimentation the following technique w a s  adopted f o r  

preparation of t he  electrode surfa.ce : 

1. 

2 .  

3. 

Grinding w i t h  successively f i n e r  alundum ro ta t ing  wheels ( rota-  

t i n g  i n  t h e  d i rec t ion  of t h e  separation). 

Lapping with a grooved glass p l a t e  under random motion, using 

garnet abrasives darn t o  5 microns grain s i z e  (BARTON). 

e s s e n t i a l  t o  conduct t h i s  operation under very l i g h t  pressure 

t o  avoid metal cold-flow. Consequently, t h i s  phase requires  

several days of c lose ly  supervised work. 

F ina l  polishing with alumina (LINDE) on p i t ch  and velvet. 

shows four electrodes a f t e r  t h i s  operation which must be t e r -  

mina ted  before a granular surface develops. Thus, some surface 

micro-pits usua l ly  remain (see Fig. 1 4 ) .  

It i s  

Fig. 12 

Examination of t he  electrode surfaces under a measuring microscope 

r e su l t ed  i n  t h e  dimension of electrode and insu la t ing  sect ions l i s t e d  

i n  Table I. Fig. 13  i l l u s t r a t e d  the  r egu la r i ty  of t h e  electrode segments. 

A microphotograph of t h e  n icke l  oxide-epoxy sandwich s t ruc ture  of elec- 

t rode  type I1 i s  shown i n  Fig.  14. 

The electrode assemblies serve as  holders f o r  t h e  electrode s tacks 

and contain the  e l e c t r i c a l  connectors. They allow posit ioning t h e  two 

e lec t rode  surfaces facing each other i n  such a way as t o  provide f o r  

t h e i r  p a r a l l e l  alignment and spacing a t  var iable  distances. The assemblies 
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Table I. 

Segmented Single Pore Electrodes 

Tot a1 width 

Total depth 

Number of segments 

Electrode segment depth 

Insulat ing segment depth 

Type I 

5 cm 

0.97 k 0.03 cm 

10 

930 * 25 microns 

50 +_ 15 microns 

Type I1 

5 cm 

0.30 k 0.006 cm 

520 k 25 microns 

90 2 25 microns 
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Fig. 12. Fissure  Pore Electrodes, Type I, i n  Polishing J i g  
After  Pre-ration of Electrode Surfaces. 
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Fig. 14. Photomicrograph of Insulating Section of 
Type I1 Electrode Sharing Nickel Oxide 
Insulators  and Epoxy Bonding Layers. 
Sca le  10 d iv  = 24.7 microns. 
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a re  designed f o r  the  easy, omple t f i l l i  g of the f i  6ure w i t h  e lec t ro-  I 

, 
l y t e  and f o r  the  reproducible attainment of pre-adjusted f i s su re  openings. 

For t h i s  purpose, the  arrangement sketched i n  Fig. 15 was used. It 

rested on a precision-ground nickel p l a t e  serving a s  c e l l  bottom. Both 

of the electrode stacks which form the f i s su re  a r e  mounted on an epoxy 

base b l a t e  and kept i n  place by an acry l ic  holder. One electrode i s  se t  

i n  a fixed pos i t ion  wi th  respect t o  the  epoxy base plate ,  t he  other  can 

be re t rac ted  t o  a variable degree by means of a dovetai l  connection 

between ac ry l i c  electrode holder and epoxy base p la te .  

f i s su re  opening has been attained the  movable electrode i s  locked i n  

After  a specif ic  

place with four screws. 

for t h i s  purpose i n  order t o  preserve the  f l a tnes s  of t he  electrode face 

Only s l igh t  pressures can, however, be applied 

but no gap must remain between epoxy base and electrode stack. The 

movable e lectrode assembly a s  a whole can be sh i f ted  away from the fixed 

assembly t o  allow f i l l i n g  and cleaning of the fissure. This pre-adjusted 

f i s s u r e  opening i s  e a s i l y  reproduced by bringing the  ground faces of the  

epoxy base pieces of fixed and movable electrode t o  intimate contact 

(under t h e  influence of spring pressure). The l a t t e r  operation a l so  

sea ls  t h e  f i l l i n g  channel i n  the base of the  fixed electrode. 

of fixed electrode assemblies of type I and I1 a re  sharn i n  Fig. 16. 

Photographs 

Experimental Apparatus-Micro-fissure Cell: The c e l l  b u i l t  t o  contain 

the f i s s u r e  assemblies, e lec t ro ly te  and counter-electrode i s  i l l u s t r a t e d  

schematically i n  Fig. 17. The bottom of the c e l l  cons is t s  of a precis ion 

machined nickel  plate ,  i n .  thick, on which the  epoxy base p l a t e s  of the  

electrode assemblies r e s t .  The c e l l  wal ls  a r e  made of 1 in.  acry l ic  sheet. 

The e l ec t ro ly t e  contained i n  t h e  f i s su re  i s  bounded on the  bottom by the 

3 
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epoxy base pieces and on each side by an ac ry l i c  pressure p la te .  

important that these boundaries are t i g h t  and do not cons t i tu te  s ign i f i -  

cant e l ec t ro ly t e  reservoirs  f o r  the  f i ssure .  

connected t o  the bu lk  l i qu id  which i s  contained i n  the c e l l  and agitated 

t o  assure a constant e l ec t ro ly t e  composition a t  the pore entrance. 

photograph of the micro-fissure c e l l  with the  p a r t s  

counter-electrode and e l ec t ro ly t e  i s  given i n  Fig. 18. 

It i s  

On top, the  fissure i s  
/ 

A 

ident i f ied  i n  Fig. 17, 

The micro-fissure c e l l  was operated inaide a n i t rogen-f i l led  thermo- 

stated box i n  order t o  avoid the establishment of mixed po ten t i a l  due t o  

the  presence of oxygen and the occurrence of na tura l  convection caused 

by temperature var ia t ions.  

l i gh t - sens i t i ve  ferr i - ferrocyanide solution. 

The enlosure also served t o  protect  the 

Experimental Apparatus-Potential Balancing Circui t :  In order t o  

keep a l l  the electrode sect ions a t  the same potent ia l ,  regardless of 

the current drawn from them, a balancing c i r c u i t ,  i l l u s t r a t e d  i n  Fig. 19, 

was employed. The branch currents from the electrode sections,  of which 

p a i r s  opposite t o  each other  i n  the  f i s su re  are connected i n  parallel, 

pass through var iable  t e n  t u r n  res i s tors .  

t o  H e l d  voltage drops i n  the order of 100 microvolts which are equal t o  

each other  within 20 microvolts a t  steady state. Thus, the electrode 

surface i s  maintained equipotent ia l  within a po ten t i a l  range comparable 

t o  spontaneous var ia t ions  observed between seemingly iden t i ca l  electrode- 

e l e c t r o l y t e  in te r faces .  

These r e s i s t o r s  are adjusted 

The voltage drops across each variable r e s i s t o r  are used as a measure 

of the  current passing through the corresponding electrode section. For 

t h i s  purpose, t he  r e s i s t o r s  can a l t e r n a t e l y  be connected v ia  a se lec tor  

switch t o  an e lec t ronic  microvoltmeter (90 megohm input impedance). The 
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Fig. 18. Micro-fissure Cell with Electrode Assemblies and 
Counter Electrode. 
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Fig. 19. Potent ia l  Balancing Circuit for Micro-fiseure C e l l .  
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voltage readings can be calibrated by passing known currents  through any 

one of the  r e s i s to r s .  

by connecting i t s  output t o  a pen recorder. 

The readings of t he  mlcrovoltmeter were recorded 

Provisions were a l so  made for measuring the  electrode poten t ia l  

of any of the sections w i t h  reapect t o  a reference connected t o  the  b u l k  

e l ec t ro ly t e  i n  the c e l l .  

a l l  the currents  f l a r i n g  between the electrode sections and the counter- 

e lectrode was maintained by a regulated constant current power supply. 

In  the  experiments t o  be reported, t he  sum of 

The measurement of the  small currents  ( t o t a l  i n  the  order of l0W A )  

and voltages (order of 1001.~ V )  occurring i n  micro-fissure experiments 

requires  the  use of guarded leads and carefu l  planning of a l l  wirings t o  

avoid detrimental ground loop currents. 

t h i s  problem is indicated i n  the block diagram Fig. 20. 

t o  the power l i n e  a re  made through i so l a t ion  transformers, except f o r  one 

instrument chosen for the  common grounding point. In  order t o  allow 

measurements w i t h  1 microvolt resolution, noise caused by magnetic induc- 

t i o n  i n  the po ten t i a l  balancing c i r c u i t  had t o  be reduced by enclosing it 

w i t h  a mu-metal shield.  

solder givlng l o w  thermal EMF. 

One of the  possible solut ions t o  

All connections 

Also, a l l  soldered connections were made w i t h  

Results and Discussion: Current d i s t r ibu t ions in  a f i s su re  pore 

w e r e  determined w i t h  a redox electrode reaction driven i n  the cathodic 

d i rec t ion .  This choice was made i n  order t o  keep f i s su re  geometry and 

electrode surface propert ies  unchanged during the  progress of the reaction. 

Potassium ferr icyanide was used as the react ing species i n  a solut ion 

containing an equal amount of potassium ferrocyanide and an excess of 

potassium hydroxide. T h i s  system had been characterized during previous 
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work i n  t h i s  laboratory and was used In other par t s  of t h i s  pro jec t  

[13,14]. The range of variables Investigated i e  l i s t e d  i n  Table 11. 

"he poten t ia l s  of the electrode eections were manually kept equal t o  

each other  by adjust ing the restetore  of the balancing c i r c u i t  as steady 

s t a t e  was approached. Resulting current d i s t r ibu t ions  are given i n  

Fig. 21 fo r  d i f f e ren t  operating parametere. An upper current densi ty  

limit of 20 m A/cm 2 of projected pore area i s  imposed by concurrent 

hydrogen evolution. 

For the observation of t rans ien t  e lectrode behavior the se t t i ngs  of 

the balancing c i r c u i t  f o r  steady s t a t e  w e r e  used throughout the t r ans i en t  

period. This resul ted i n  temporary po ten t i a l  var ia t ions between sect ions 

i n  the  order of  100 microvolts. A t y p i c a l  example of t r ans i en t  behavior 

observed by t h i s  technique i s  shown i n  Fig. 22. 

The experiments have demonstrated the  f e a s i b i l i t y  of the f i s s u r e  

concept f o r  s ingle  pore electrode s tudies .  C u r r e n t  d i s t r ibu t ion  i n t o  

the depth of a fissure pore can be determined by the measurement of 

branch currents  from electrode sections,  which are kept equipotent ia l  by 

a balancing c i r c u i t .  

"he major l imi t a t ion  of the described equipment l i e s  i n  the segmented 

electrodes.  

mechanical precis ion immediately af ter  fabricat ion,  harever, t h i s  pre- 

Their design allowed the attainment of the desired high 

c i s ion  could not be maintained over extended periods of time due t o  

mater ia l  p roper t ies  of the laminated structure, such as p l a s t i c  deforma- 

t i o n s  and chemical a t tack.  Also desirable i s  a reduction of inherent 

po ten t i a l  differences observed between electrode sect ions i n  t h e  absence 

of ex terna l  current .  



Table 11. 

Parameters f o r  Fissure Pore Experiments 

Electrode Type Electrolyte* Fissure OpeninK,v T o t a l  Current,@ 

I 1 200 io- 500 

I1 2 620 15-1000 

I1 2 2 00 50- 500 
I1 2 50 50-200 

* 
Electrolyte  composition: 

No. KOH KqFe(CIT))t; K Fe(CXI6 3 

1 1.70~ 0.10~ 0.1OM 
2 0.85M 0.10Y 0.1OM 
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In  order f o r  t he  f i s s u r e  t o  be a r e a l i s t i c  model of a s t r a igh t ,  

cy l indr ica l  pore of equivalent diameter,  ~ S B  t ransport  by convection 

should not be induced i n  the  f iseure.  

b u l k  e lec t ro ly te ,  although desirable f o r  es tab l i sh ing  known concentrations 

a t  the  pore entrance, was found not feasible .  Instead, a thin,  glass  

f i l t e r  p l a t e  (coarse, 1.5 mm th ick) ,  placed over the pore entrance gave 

evidence of s t a5 i l i z ing  the f lu id  i n  the  f i s su re  without s ign i f icant  

e f f ec t s  otherwise. Under conditions of high t o t a l  current (> 1OOckA) and 

la rge  f i s su re  opening (> 20W) a current reversal  could be observed i n  

the lower-lying sections of the f i ssure  electrode a f t e r  prolonged periods 

(1 h r )  of e l ec t ro lys i s .  

model and may be caused by the accumulation of reduced species i n  the 

bottom due t o  natural convection i n  the  f i s su re  and f romthe  counter- 

electrode. 

For t h i s  reason, s t i r r i n g  of the  

This appears t o  be an a r t i f a c t  of the  f i s su re  

The observed g rea t ly  uneven current d i s t r ibu t ion  i n  favor of t he  

f r o n t  e lectrode sect ion points t o  the d e s i r a b i l i t y  of a f i n e r  electrode 

divis ion o r  a less reversible,  more spreading reaction. An improved 

spatial resolut ion of current d i s t r ibu t ion  i s  necessary f o r  a c r i t i c a l  

comparison w i t h  t heo re t i ca l  predictions.  

Acknowledgement: The mechanical construction of t h i s  apparatus was 

car r ied  out i n  part i n  t he  shops of t he  Lawrence Radiation Laboratories, 

under the sponsorship of the  Inorganic Materials Research Division. 

Reaction Distr ibut ion i n  a Dissolving Porous Anode 

It has become evident that preerent experimental techniques a r e  not 

capable of providing adequate information about the nature of the d is t r ibu-  

t i o n  of react ion w i t h i n  flooded porous electrodes.  A large port ion of 



54 

c 

b 

t h i s  study has been aimed a t  developing and evaluating new experimental 

methods which would be capable of determining the  desired cha rac t e r i s t i c s  

of porous electrode behavior. 

sectioned electrodes which were fabricated from t h i n  wafers of e lectrode 

material insulated one from another. The method, t o  be described here, 

measured the  react ion d is t r ibu t ion  without sectioning o r  otherwise a l t e r i n g  

t h e  electrode before and during operation. 

choose an electrode which, upon e lec t ro lys i s ,  changed i n  a manner which 

permitted evaluation of the  reaction d i s t r ibu t ion  throughout t he  porous 

body. The dissolving porous metal anode s a t i s f i e d  these c r i t e r i a  since 

t h e  change i n  porosity d is t r ibu t ion ,  due t o  e l ec t ro lys i s ,  was equivalent 

t o  the  time-average reac t ion  d is t r ibu t ion .  For e lectrodes w i t h  a uniform 

i n i t i a l  porosity, t he  change required measurement of t he  pos t -e lec t ro lys i s  

d i s t r ibu t ion .  A s  long as the  porous matrix changed but s l i gh t ly ,  t h e  

predict ions of ava i lab le  theo re t i ca l  models should apply. 

The two methods reported above employed 

It was thus necessary t o  

Experimental Design: The porous body under invest igat ion had t o  be 

prepared i n  such a way t h a t  it could be characterized i n  a simple manner. 

Spherical p a r t i c l e s  of uniform diameter were used i n  fabr ica t ing  the  

s in te red  electrode since the  resul t ing spec i f ic  surface area,  cm /cm , 
was e a s i l y  calculated.  Electrodes were prepared so t h a t  the  i n i t i a l  

poros i ty  d i s t r ibu t ion  was uniform t o  within two p a r t i c l e  diameters of t h e  

external surface. 

2 3  

If t h e  anodic react ion product were insoluble, it would be evident 

t h a t  t he  i n t e r i o r  surface of t h e  electrode would become coated and, 

eventually, t he  pores clogged with the insoluble sal t .  This s i t ua t ion  

i s  unsa t i s fac tory  when a simple charac te r iza t ion  of t h e  porous body i s  
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desired.  

electrochemical i n t e re s t ,  neut ra l  o r  ac id ic  systems are used. There 

should be only one react ion occurring throughout t he  electrode; metals 

having more than  one stable ionic  form, f o r  instance,  cannot be used w i t h  

confidence. 

Since basic metal salts  are insoluble i n  aqueous systems of 

A t e rnary  e l ec t ro ly t e  was used which was d i l u t e  w i t h  respect t o  the  

reac t ing  species and concentrated w i t h  respect t o  i n e r t  species. The 

physical propert ies  of such an e lec t ro ly te  do not vary grea t ly  with 

concentration changes r e su l t i ng  from reaction. Since the conductivity 

w a s  high, homogeneous heat generation (I R l o s s )  was low; since the  con- 

cent ra t ion  of react ing species was low, the  tendency of the  so l id  metal 

sa l t  t o  p rec ip i t a t e  within the  electrode pores was reduced. 

2 

Following the  considerations outlined above, t he  acid copper systems 

(Cu, CuS04, H2S04) was chosen for  study. 

fabr icated from spherical  copper powder of uniform p a r t i c l e  diameter 

50 microns. 

Porous copper e lectrodes were 

It i s  apparent t h a t  the geometry of the e l ec t ro lys i s  chamber and 

t h e  hydrodynamic conditions external t o  the  electrode a f f ec t  g rea t ly  the  

behavior of the  electrode. It becomes convenient, i n  the character izat ion 

of these factors ,  if the electrode i s  subject t o  such an environment 

t h a t  it behaves i n  a one-dimensional manner. Evidently the current 

density, a t  the ex terna l  surface, should be uniform across the e n t i r e  

surface.  

A s  i n  the  f i r s t  experimental study, a rectangular e l ec t ro lys i s  

chamber was used where t h e  porous electrode and the  counterelectrode 

occupied opposite sides.  In  such a chamber, assuming tha t  there  was no 

convective motion i n  the e lec t ro ly te  and ignoring edge e f fec ts ,  the  



current  dens i ty  would be uniform over the  external  surface of both 

electrodes.  However, there  would uaual ly  be a na tura l  convective motion 

i n  the  e l ec t ro ly t e  so t h a t  the current would be unevenly d is t r ibu ted  

across  the  surface of t he  electrode. 

t he re  was uniform mass t r ans fe r  over t h e  external  surface of t he  porous 

electrode was superimposed. This dominated natural  convection i n  the  

c e l l .  Such a uniform flux was established i n  w e l l  developed (s teady)  

mass t r a n s f e r  from the  wal l  of a square duct i n to  a turbulent f l u id .  

So tha t  the porous electrode of i n t e r e s t  was not exposed t o  t h e  

A hydrodynamic arrangement wherein 

mass t r a n s f e r  entrance region, as had happened i n  the  f l rs t  experimental 

method, a second porous electrode, designated the  buffer ,  w a s  placed 

immediately upstream from the  electrode of i n t e re s t .  Calculations, 

based on t h e  analogy of Deissler [151, indicated tha t  the buffer  e lec-  

t rode  should be three  channel diameters i n  length.  When f lu id  en ters  

a f l a w  channel, the veloci ty  d is t r ibu t ion  undergoes rearrangement over 

a distance,  near t he  entrance, which i s  typ ica l ly  50 t o  100 channel 

diameters i n  length f o r  turbulent flow. Consequently the  electrodes were 

placed 150 channel diameters downstream from t h e  entrance of the  channel. 

After e l ec t ro lys i s ,  the  void spaces i n  the  electrode were f i l l e d  

with a hard material i n  order t o  maintain the  s t ruc tu ra l  i n t e g r i t y  of 

t h e  o r ig ina l  matrix during sectioning. 

sectioned and thereby made avai lable  f o r  microscapic examination. This 

work has not been described elsewhere, and w i l l  therefore  be reported i n  

some d e t a i l .  

The electrode was subsequently 

Experimental Apparatus: Porous copper p h t e s ,  fabr icated from 

spher ica l  p a r t i c l e s  of order f i fky  micron diameter, and prepared by 
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* 
s in t e r ing  In  a reducing atmosphere, were obtained. Individual e lectrodes 

were cut from these plates;  the  specimen electrodes were 8 cm long, 

2 cm wide and 1 cm deep, whereas the buf fer  e lectrodes were 6 cm long, 

2 cm wide and 1 cm deep. 

The electrodes were fastened t o  a melamine supporting p l a t e  using 

nylon screws. E lec t r i ca l  contact was made by means of sol id  copper 

backing p l a t e s  s i tua ted  between t h e  e lectrodes and t h e  supporting p la te .  

The f l o w  channel, shown i n  Fig. 23, was fabricated from l u c i t e .  

The e l ec t ro ly t e  entered the 2 x 2 cm channel and flowed three meters 

before passing over the,electrodes which were positioned i n  the  e lec t ro ly-  

s i s  chamber located a t  the  right-hand end of the  channel. After passing 

over the electrodes,  t h e  e lec t ro ly te  emptied i n t o  a surge chamber and 

was subsequently recirculated.  In the  channel, t he  Reynolds number 

was 3750. To prevent s i d e  reactions,  due t o  t h e  presence of oxygen, 

the e l ec t ro ly t e  was blanketed with nitrogen. 

A diagram of the  e l e c t r i c a l  c i r c u i t  i s  shown i n  Fig. 24. The speci- 

men electrode was driven anodically by a constant current power supply; 

The buffer  e lectrode was controlled by a poten t ios ta t  using, as the  

reference poten t ia l ,  t he  poten t ia l  of the specimen electrode. The poten- 

t i a l  difference between t h e  two electrodes was maintained a t  less than 

50 microvolts. The current passing through each electrode was deter-  

mined by measuring the  voltage across 0.1 ohm precis ion r e s i s to r ,  using 

a potentiometric recorder. 

. 
- 

* 
M a t t  Metallurgical Corporation, 272 Huyshope Avenue, Hartford, 
Connecticut. 
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Fig. 23. Flar Channel for  Dissolving Porous Anode. Experiments. 
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Ekperimental Procedure: I n  preparing the electrodes, a l l  machining 

operations w e r e  performed wi th  tools which were degreased w i t h  hexane; 

no cutt ing lubricants were used and the electrodes w e r e  handled w i t h  

degreased gloves. 

It was found that the electrodes, a s  supplied, exhibited a region 

of nonuniform porosity, near the external 8 x 2 cm surface, which was 

approximately 250 microns thick. 

20 mils off the original surface. This resulted i n  smearing a th in  layer 

of copper near the remaining external surface; t h i s  smeared layer was 

removed by immersing the electrode i n  l .w %SO4 and passing anodic 

current of high density (1 a/cm ) through the electrode for approximately 

60 seconds. 

This region was removed by milling 

2 

A blank was then removed f r o m  the downstream end of the specimen 

electrode; subsequent examination of t h i s  blank permitted determination 

of the  i n i t i a l  porosity distribution. 

rinsed, d r i e d  and weighed; these operations were repeated u n t i l  the 

w e i g h t  of the electrodes w a s  reproduced t o  +1 mg. 

Both electrodes were thoroughly 

Both electrodes were mounted on the supporting plate and flooded 

w i t h  electrolyte,  using vacuum; the flooded electrodes were then mounted 

i n  the w a l l  of the flar channel. 

The electrolyte (20 l i t e r s  of 1.p H.$04) was prepared from d i s t i l l e d  

wakex and reagent grade acid. 

system f o r  24 hours pr ior  t o  the experiment. The pump was actuated and 

the temperature of the electrolyte was adjusted t o  25 f l0C by means of 

a cooling uni t  i n  the Plow l ine .  The flow rate through the channel was 

addusted t o  5 l./min. 

Nitrogen was sparged through the flow 

The constant current parer supply was turned on and adjusted t o  
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de l ive r  t h e  desired current t o  the specimen electrode; t he  potent io-  

s ta t  was then turned on and t h e  poten t ia l  difference between t h e  porous . 
electrodes adjusted t o  zero (550 PV). The two anodic branch cur ren ts  

(determined from the  voltage drops across  the  0.1 ohm r e s i s t o r s )  were 

a l t e r n a t e l y  measured on the  one-track poten t ios ta t ic  recorder. 

After e l ec t ro lys i s  t he  electrodes were removed from t h e  flow channel 

and the  cycle of r insing,  drying and weighing operation was repeated 

u n t i l  t he  weight of both electrodes was reproduced t o  k1 mg. The buf fer  

e lectrode was then se t  as ide and not treated fur ther .  

I n  order t o  support t he  s t ruc tu ra l  i n t e g r i t y  of t h e  porous matrix 

during subsequent sectioning, the pores of both the specimen electrode 

and t h e  blank, removed previously, were f i l l e d  w i t h  epoxy embedding 

material. This r e s i n  i s  chemically i n e r t ,  extremely hard, and expands 
* 

l e s s  than 1% during curing. The i n t e r n a l  s t ruc ture  of t he  cas t  e lectrode 

was exposed by cut t ing,  w i t h  a band saw, perpendicular t o  the react ion 

face (8 x 2 cm s ide )  so tha t  a 2 x 1 cm sec t ion  was exposed. The exposed 

face was then sanded, polished and lapped on a. g lass  f la t  w i t h  l ens  

grinding p a d e r .  These cmnnthing npemt ions  resul ted In t he  smearing of 

copper over t h e  exposed face; t h i s  smeared layer  was removed by immersing 

3’ t h e  sample i n  a n  etchant, a t  ambient temperature, composed of 4 g m  C r O  

0.8 gm ‘NH4Cl, 5 m l  HNO 

exposed a well-defined portion of t h e  specimen electrode f o r  subsequent 

microscopic examination. 

and 5 m l  €$SO4 i n  90 ml H20. This treatment 3’ 

A metallurgical microscope, w i t h  camera attachment, was used t o  take 

high cont ras t  photomicrographs a t  132 diameter magnification. A composite 

* 
Ciba Araldite res in ,  obta.ined from R. F. Cargi l le  Laboratories, 
33 Factory S t r ee t ,  Cedar Grove, New Jersey.  
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map of a port ion of the  exposed surface, which included the external  

surface, was constructed from some t h i r t y  photomicrographs. The map 

depicted an area of the exposed surface of about 6 x 1 mm; t he  map i t se l f ,  

however, measured approximately 75 x 20 cm. A portion of such a map i s  e 

shown i n  Fig. 25. 

Because the  experiment was so designed tha t  the electrode react ion 

was a function of depth i n  the electrode only, t he  porosi ty  a t  any depth 

i n  the  electrode should be uniform throughout the electrode. Then, 

because of t h e  randomness of t h e  spheres, t h e  l i n e a r  porosi ty  was equi- 

valent t o  the  t r u e  ( a rea )  porosity a s  long a s  t h e  measurement was made 

p a r a l l e l  t o  the super f ic ia l  surface. This was accomplished by scribing a 

l i n e  p a r a l l e l  t o  the  l i n e  through the  supe r f i c i a l  surface, measuring the 

t o t a l  length of the l i n e  which covers void spaces, and measuring the  t o t a l  

length of the  l i n e  i t s e l f .  The l i nea r  porosity,  then, was the  r a t i o  of 

these two lengths.  

Results and Discussion: A t o t a l  of s i x  e l ec t ro lys i s  experiments 

were co_n^durt.ed: t he  experimental conditions a r e  tabulated i n  Table 111. 

The purpose of the  experiments was both t o  invest igate  the capab i l i t i e s  

and l imi ta t ions  of the method and t o  re f ine  the technique. The p a r t i a l  

r e s u l t s .  derived i n  the experiments were evaluated i n  t h i s  context and 

were not applied t o  the investigation of t he  pa r t i cu la r  system involved. 

In  the f i r s t  three  experiments, it was apparent t h a t  a considerable 

port ion of t h e  o r ig ina l  external surface of the  electrode had disappeared 

t during reaction; t he  weight differences,  before and a f t e r  e lec t ro lys i s ,  
& 

were grea ter  than the  corresponding Faradaic losses.  It was reasonable - t o  expect that the  apprecia.lbe non-Faradaic losses  were due t o  exfo l ia t ion  
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wL& 111. 

Summary of Experimental Conditions 

Experiment Number Current Density on Super- Duration of 
f i c i a l  Surface Area of Elec t ro lys i s ,  minutes 
Specimen Electrode, ma/cm 

Temperature : 

Acid Concentration: 

Flow Rates: 

50 

25 
10 
10 

10 

5 

544 
370 
110 

150 
120 

120 

25 f i " c  
1.5 M 
Flow channel, 5.0 l./min (21 cm/sec) 

Counterelectrode compartment, 0.1 l./rnin 
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of copper p a r t i c l e s  when t h e  bridges between p a r t i c l e s  dissolved and 

those near t h e  ex terna l  surface broke away and were swept darn t h e  flow 

c hanne 1. 

In Experiment 4, a r t e r  e lec t ro lys i s ,  t h e  electrode was f i l l e d  w i t h  

epoxy and examined a t  three  positions s i tua ted  3.0, 6.5, and 7.0 cm 

downstream from t h e  leading edge. 

e s s e n t i a l l y  S-shaped wherein t h e  rounding a t  the f ron t  end (near t he  

external  surface)  was on t h e  order of one p a r t i c l e  diameter ( 5 0 ~ ) .  

values of poros i ty  i n  the  depth of t h e  electrode (past  5OOcl) were, f o r  

t h e  three posi t ions respectively, 37.9 * 0.8%, 35.5 f 1.18, and 34.0 

k 1.0% a t  the  95% confidence level .  

The data described a band which was 

The 

The difference between the  i n i t i a l  and the f inal  porosity d is t r ibu-  

t i on ,  integrated over the  electrode, gives the  apparent losses  due t o  

e l ec t ro lys i s .  

t o  t he  value i n  t h e  depth, a t  each posi t ion,  t h e  resu l t ing  apparent 

Assuming that  the i n i t i a l  porosity was uniform and equal 

2 l o s ses  (83, 122, and 101 mg/cm 

were far grea te r  than the  Faradaic loss  (29mg/cm ). 

t h e  t i m e ,  that the  discrepancy was due t o  a nonuniform i n i t i a l  d i s t r ibu-  

t i on ,  which had not been measured f o r  t h i s  experiment. However, a portion 

of the  same pla te ,  from which the electrode was o r ig ina l ly  cut,  was la te r  

examined. From t h i s  examination it was apparent tha t  the porous matrix 

before e l ec t ro lys i s  exhibited a nonuniform region, near t he  surface, 

of approximate thickness 25OP. 

was t h e  6ame over the  en t i r e  electrode surface p r io r  t o  e l ec t ro lys i s ,  

the apparent losses  (44, 83, 62 mg/cm , respec t ive ly)  were still grea ter  

than t h e  Faradaic losses .  

a t  t he  three  s ta t ions ,  respect ively)  
2 It w a s  thought, a t  

Assuming t h a t  t h i s  i n i t i a l  d i s t r ibu t ion  

2 
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2 Experiment 5 was conducted a t  an e l e c t r o l y s i s  rate of 10 m/cm 

f o r  a duration of 120 minutes, corresponding t o  a Faradaic l o s s  of 285 mg. 

The ac tua l  weight loss ,  however, was 1.139 gm a t  t h e  specimen electrode. 

Since the  apparent non-Faradaic lo s s  was considerable, t h e  microscopic 

examination of t he  f i n a l  s t a t e  of the  e lectrode was not conducted. 

P r io r  t o  t h e  e l ec t ro lys i s  of Ekperiment 6, t h e  specimen electrode 

was machined t o  remove the nonuniform surface l aye r  as discussed pre- 

viously. The i n i t i a l  d i s t r ibu t ion ,  determined from t h e  blank, i s  shown 

i n  Graph (a )  of Fig. 26; t he  mean porosity i s  33.8 ?r 0.1% a t  the  95% 

confidence l eve l .  

a duration of 120 minutes, corresponding t o  Faradaic losses ,  a t  the  

specimen electrode,  of 146 mg. 

cycle of weighing operations, indicat ing t h a t  oxidation products were 

accumulating within the electrode and were contributing a detectable  

portion t o  the  ove ra l l  weight. The t o t a l  accumulation, a s  observed, was 

approximately 104 of the to ta l  weight loss  which w a s ,  f o r  t he  speciinen, 

2 Elec t ro lys i s  was conducted a t  a r a t e  of 5 ma/cm and 

The electrodes gained weight a f t e r  each 

314 

A f t e r  e l ec t ro lys i s ,  the electrode vas f i l l e d  with epoxy and sectioned 

a t  three  posi t ions s i tua ted  1 . 4 ,  3.1 and 5.0 cm downstream from t h e  

leading edge. The porosity data from the analyses, respectively, are 

shown i n  Graphs (b ) ,  (c ) ,  and ( a )  of Fig. 26. The values of porosity 

i n  t h e  depth (past 3 5 0 ~ )  a re ,  for t h e  th ree  posi t ions respectively, 

33.9 ?r 3.O$, 29.9 f 1.95, and 42.2 t 1.14 a t  the 95% confidence l eve l ;  

evidently there  was a considerable var ia t ion  i n  poros i ty  from point t o  

point  along t h e  electrode which could have been due only t o  gross non- 

uniformity i n  the  electrode pr ior  t o  e l ec t ro lys i s .  
. , 
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Fig. 26. Porosity Distribution before and af'ter Electrolysis .  
Dissolving Porous Anode Experiment N r .  6. 
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Assuming t h a t  the i n i t i a l  porosity w a s  uniform and equal t o  the 

value i n  the  depth (past  350P) a t  each posi t ion,  t he  in tegra t ion  of t h e  

data  indicated t h a t  the  apparent losses  (5.9, 28.6 and 9.4 mg/cm , 
respec t ive ly)  agreed wi th  t he  Faradaic losses  (10.1 mg/crn ) more so than 

t h e  r e s u l t s  of Experiment 4; however, the  agreement was i n  no way quan- 

tit a t  ive  . 

2 

2 

The data indicated, i n  a qua l i ta t ive  manner, that the  bulk of reac- 

t i o n  took place very near the external  surface which was as expected. 

However, because of exfo l ia t ion  of t he  surface,  the  microscopic analysis  

did not give reproducible character izat ions of the  reac t ion  d is t r ibu t ion .  

A b e t t e r  procedure would be t o  use electrodes which would not ex fo l i a t e  

and t o  use a system f o r  which the reac t ion  would be more d i s t r ibu ted  

throughout t h e  depth of the porous body. 

On t h e  bas i s  of t he  experiments described i n  the  previous section, 

it was found t h a t  react ion d is t r ibu t ions  can be determined which a r e  

i n  qua l i t a t ive  agreement with present theories .  It was demonstrated t h a t  

e l e c t r o l y s i s  experiments can be conducted -in such a way tha t  the e lec-  

t rode  behavior i s  well-characterized. Rcmever, secondary e f f ec t s ,  due 

l a rge ly  t o  the  fabr ica t ion  of t h e  e lectrode material, have obscured 

quant i ta t ive  r e su l t s .  

The electrodes,  even i f  manufactured perfect ly ,  would tend t o  

ex fo l i a t e  when bridges between copper pa r t i c l e s  dissolve and the  p a r t i c l e s  

near t h e  surface tend t o  break away from the  electrode and be swept down 

the  flow channel. In  addition, t he  manufacturer of the electrodes was 

unable t o  supply porous bodies with a homogeneous uniform porosity; 

a l t e r n a t e  manufacturers were not  found, although some twenty firms were 

approached. 
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A considerable improvement i n  t he  technique would be t o  conduct 

e l e c t r o l y s i s  with electrodes of d i f fe ren t  s t ruc ture  such t h a t  nonuniformity 

and ex fo l i a t ion  would be reduced. 

would be overcome by t h e  use of electrodes fabricated by s in t e r ing  together 

a packet of small diameter wires. The void spaces within t h e  packet 

(between the  wires )  would cons t i tu te  t h e  pores which, depending upon the  

placement of t h e  wires, could be made more o r  less s t ra ight .  

It i s  possible  t h a t  these shortcomings 

Although the  acid copper system i s  convenient i n  some respects, 

it nevertheless has a serious disadvantage i n  tha t  the  exchange current 

density i s  very high. 

exchange current  dens i ty  i s  proportional t o  the  parameter 4 so that, f o r  

l a rge  values, t he  reac t ion  d is t r ibu t ion  i s  highly nonuniform. It would 

be more su i t ab le  t o  use a system f o r  which the exchange current density 

i s  lower but which, a t  the same t i m e ,  would have t h e  desirable  characters  

discussed under experiment design. 

A s  mentioned i n  t h e  theo re t i ca l  sect ion above, the 

. 

The measured loss  i n  electrode weight was affected by the  formation 

of oxide during the  operations involved i n  preparing the  e lectrodes f o r  

weighing. A b e t t e r  procedure would be t o  perforrn such operations i n  an 

i n e r t  or  reducing atmosphere. 

In  view of t h e  r e s u l t s  reported above, it should be possible  t o  

modify the technique t o  such an extent  t h a t  quant i ta t ive  results might be 

obtained. Such modification would include t h e  use of wire electrodes, 

t h e  use of a system w i t h  lower exchange current density, and the use of 

an i n e r t  atmosphere i n  the  weighing operations. 
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CONCLUDING FGMARKS 

The foregoing summary of the research work performed under t h i s  

grant cannot but leave the  reader with the  impression t h a t  major gaps 

s t i l l  ex i s t  i n  our knowledge of the dynamic behavior of porous electrodes.  

A s  far as theory i s  concerned, t h e  quant i ta t ive descr ipt ion of the 

dynamic behavior of flooded porous electrodes i s  i n  a completely s a t i s -  

fac tory  s t a t e  only with respect t o  the  ra ther  impractical  case where the  

electrode matrix i s  invariant.  In ac tua l i t y ,  p rac t i ca l ly  a l l  important 

flooded systems involve changes i n  matrix configuration and l o c a l  elec- 

t rode  k ine t ics  as the  charging (or discharging) progresses. 

e n t i r e l y  possible t o  es tab l i sh  appropriate treatments f o r  the  simplest 

systems involving change of configuration (such as the  dissolut ion o r  

deposit ion of a metal i n  the  matrix), it i s  highly doubtful whether 

complete descr ipt ion of electrodes involving more complex react ions (such 

as the  formation of an oxide from the  metal, e t c . )  i s  possible,  o r  i f  

possible,  worth the e f f o r t .  However, the theo re t i ca l  framework t h a t  has 

emerged as a result of t h i s  w o r k  should a t  l e a s t  serve as a good s t a r t i n g  

point f o r  designing meaningful experiments involving the  more complex 

p rac t i ca l  systems. Thus, even if  complete mathematical descr ipt ion of 

these  complex p rac t i ca l  systems i s  not possible, a t  least a good bas i s  

e x i s t s  f o r  empirical  correlat ion of electrode performance and design 

and scale  up of electrodes.  

. While it i s  

The experimental approach t o  the  character izat ion of t he  behavior 

of porous electrodes,  i n  par t icu lar  t h e  determination of react ion d i s t r i -  

bution, s t i l l  leaves much t o  be desired.  The experimental d i f f i c u l t i e s  

associated with work on systems of r e a l i s t i c  scale  are qui te  formidable, 
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both i n  respect t o  the  mechanical design and the  e l e c t r i c a l  measurements. 

Unfortunately, since the  c r i t e r i a  of s i m i l a r i t y  prohib i t  any extensive 

scale  up, experiments w i t h  geometrically expanded experimental models 

cannot y ie ld  meaningful information about the behavior of porous elec-  

t rodes  of p r a c t i c a l  significance. 

The importance of carefu l  consideration of mass t ransport  and loca l  

k ine t ic  e f f e c t s  i n  the  depth of porous e lec t rodes  cannot be overemphasized. 

Some simplif icat ions,  such as that  of one-dimensional geometry, are qui te  

generally va l id  while many others, p a r t i c u l a r l y  t h e  often-encountered 

condition of uniform e l ec t ro ly t e  composition, are seldom sa t i s fac tory .  

In  the  ca lcu la t ing  of t h e  performance of such electrodes, the use of 

approximations, val id  over a narrow range of current dens i t ies ,  t o  t h e  

bes t  ava i lab le  electrode k ine t ic  expression must be avoided. Because of 

the wide range of reac t ion  conditions ex i s t ing  simultaneously i n  an 

operating porous electrode,  such s impl i f ica t ions  generally lead t o  com- 

p l e t e l y  spurious r e su l t s .  In analyzing flooded porous electrodes, each 

system must be considered i n  d e t a i l  and conclusions drawn from vas t ly  

simplified treatment of spec ia l  cases must be avoided. 



CONTINUATION OF RESMCH INITIATED UNDER THIS GRANT 

Research concerning the  dynamic behavior of flooded porous elec-  

t rodes  i s  being continued under the sponsorship of t h e  Inorganic Materials 

Research Division of the Lawrence Radiation Laboratory, University of 

Cal i fornia ,  i n  two areas: 

1. Determination of react ion d i s t r ibu t ion  i n  a dissolving meta,l 

anode. 

2. Characterization of flooded electrode behavior f o r  cases where 

simple changes i n  matrix configuration occur during operation. 
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PERSONNEL 

The personnel l i s t e d  below part ic ipated i n  the  conduct of research 

under t h i s  project  on a paid bas i s  f o r  t he  periods indicated. 

S t a r t  Term. 
Date Date - 

C. W.  T0bia.s (Princ. Invest . )  10/1/61 9/30/64 One month ful l - t ime each yr. 

R. H. Muller (Asst. Res. Chem. ) 10/1/61 9/1/62 50% 5ime 10/1/61 t o  12/31/61; 
33$ t i m e  thereaf te r .  

J. L. Bomben (Res. Asst . )  10/1/61 9/6/63 50% time throughout 

Secretary 10/1/61 3/1/62 18.75% t i m e .  

D. B. Turcsanyi (Lab. Techn.) 10/1/61 6/30/64 33% t i m e .  

Secretary 3/1/62 

B-T Yo (Lab. Techn. ) 2/1/62 

R. N. Fleck (Res .  A s s t . )  

E. A. Grens ( A s s t .  Res. Chem. 

4/1/62 

6/1/62 

7/1/62 

Engr . +Fa,c . Invest. ) 

D. N. Hanson (Fac. Invest .)  

H-Y Cheh (Res. A s s t . )  9/1/62 

R. C. Alkire (Res. A s s t . )  9/9/63 

11/1/64 25% time. 

6/1/62 

6/30/62 50% t i m e .  

9/30/64 3 summer months ful l - t ime 

Hourly ba si s . 

each summer. 

7/31/62 100% f o r  one month. 

5/30/63 50% time. 

11/1/64 50% time. 

G. L. Horvath (Jr. Engr. ) 2/1/64 6/30/64 25% t i m e .  

Y. Ogiwara (Res. A s s t . )  9/14/64 1/27/65 50% time. 

Secretary 11/1/64 3/1/65 25% t €me. 
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